Math, asked by dipanshee722, 1 year ago

If x=9-4√5, find the value of x²+1/x²

Answers

Answered by gaurav2013c
477

x = 9 - 4 \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5} }  \\  \\  \frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  \\  \\  \frac{1}{x}  =  \frac{9 + 4 \sqrt{5} }{ {(9)}^{2}  -  {(4 \sqrt{5} )}^{2} }  \\  \\  \frac{1}{x}  =  \frac{9 + 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{x}  = 9 + 4 \sqrt{5}

Now,

 {x}^{2}  +  \frac{1}{ { x}^{2} }  =  {(9 - 4 \sqrt{5}) }^{2}  +  {(9 + 4 \sqrt{5} )}^{2} \\  \\  = 81 + 80 - 72 \sqrt{5}  + 81 + 80 + 72 \sqrt{5}  \\  \\  = 81 + 80 + 81 + 80 \\  \\  = 161 + 161 \\  \\  = 322

Answered by tardymanchester
214

Answer:

x^2+\frac{1}{x^2}=322

Step-by-step explanation:

Given : If x=9-4√5

To find : The value of x^2+\frac{1}{x^2}

Solution :

First we find, \frac{1}{x}

Substitute x = 9 -4 \sqrt{5}

\frac{1}{x} =\frac{1}{9 - 4 \sqrt{5}}\\ \frac{1}{x}=\frac{1}{9- 4\sqrt{5}}\times\frac{9+4\sqrt{5}}{9+4\sqrt{5}}\\\\ \frac{1}{x}=\frac{9+ 4\sqrt{5}}{{(9)}^{2}-{(4\sqrt{5} )}^{2}} \\\\ \frac{1}{x} = \frac{9+ 4\sqrt{5}}{81 - 80}\\\\ \frac{1}{x}= 9 + 4\sqrt{5}

Now, substitute in x^2+\frac{1}{x^2}

{x}^{2}+\frac{1}{ { x}^{2}}={(9 - 4\sqrt{5})}^{2}+{(9 + 4\sqrt{5} )}^{2}\\ \\= 81 + 80 - 72 \sqrt{5}+81 + 80 + 72\sqrt{5}\\= 81 + 80 + 81 + 80\\= 161 +161\\= 322

Therefore, x^2+\frac{1}{x^2}=322

Similar questions