Math, asked by shraddhasingh3031, 4 months ago

if x=9-4√5 find the value of x²+1/x²​

Answers

Answered by itzsoftboy5
2

Answer:

\begin{gathered}x = 9 - 4 \sqrt{5} \\ \\ \frac{1}{x} = \frac{1}{9 - 4 \sqrt{5} } \\ \\ \frac{1}{x} = \frac{1}{9 - 4 \sqrt{5} } \times \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} } \\ \\ \frac{1}{x} = \frac{9 + 4 \sqrt{5} }{ {(9)}^{2} - {(4 \sqrt{5} )}^{2} } \\ \\ \frac{1}{x} = \frac{9 + 4 \sqrt{5} }{81 - 80} \\ \\ \frac{1}{x} = 9 + 4 \sqrt{5} \end{gathered}

x=9−4

5

x

1

=

9−4

5

1

x

1

=

9−4

5

1

×

9+4

5

9+4

5

x

1

=

(9)

2

−(4

5

)

2

9+4

5

x

1

=

81−80

9+4

5

x

1

=9+4

5

Now,

\begin{gathered} {x}^{2} + \frac{1}{ { x}^{2} } = {(9 - 4 \sqrt{5}) }^{2} + {(9 + 4 \sqrt{5} )}^{2} \\ \\ = 81 + 80 - 72 \sqrt{5} + 81 + 80 + 72 \sqrt{5} \\ \\ = 81 + 80 + 81 + 80 \\ \\ = 161 + 161 \\ \\ = 322\end{gathered}

x

2

+

x

2

1

=(9−4

5

)

2

+(9+4

5

)

2

=81+80−72

5

+81+80+72

5

=81+80+81+80

=161+161

=322

Step-by-step explanation:

plz inbox kardo

Answered by PharohX
9

GIVEN :-

  •  \sf \: x = 9 - 4 \sqrt{5}

TO FIND :-

  •  \sf \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \\

SOLUTION :-

First we need to calculate 1/x

  \sf\frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5} }  \\

 \sf \:  \:  \:  \:  \:  =  \bigg( \frac{1}{9 - 4 \sqrt{5} }  \bigg). \bigg( \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  \bigg) \\

 \sf \:  \:  \:  \:  \:  =  \bigg( \frac{9 + 4 \sqrt{5} }{ {9}^{2}   -  { (4 \sqrt{5})}^{2}  }  \bigg) \\

 \sf \:  \:  \:  \:  \:  =  \bigg( \frac{9 + 4 \sqrt{5} }{ 81 - 80 }  \bigg) \\

 \sf \:  \:  \:  \:  \:  =   9 + 4 \sqrt{5}  \\

Now Appling

 \sf \: x +  \frac{1}{x}  = (9 - 4 \sqrt{5}  + 9 + 4 \sqrt{5} ) \\

 \sf \: x +  \frac{1}{x}  = 18 \\

Now squaring both sides

 \sf \:  \bigg(x +  \frac{1}{x}  \bigg)^{2}  = 18^{2}  \\

  \sf \: {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.(x). \frac{1}{(x)}  = 324 \\

  \sf \: {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2  = 324 \\

  \sf \: {x}^{2}  +  \frac{1}{ {x}^{2} }   = 324 - 2 \\

 \green{  \boxed{ \sf \: {x}^{2}  +  \frac{1}{ {x}^{2} }   = 322 }}\\

Similar questions