Math, asked by sujith5235, 1 year ago

If X=9+4✓5, find ✓x + 1/✓x

Answers

Answered by LovelyG
4

Answer:

2√5

Step-by-step explanation:

Given that ;

x = 9 + 4√5

It can be written as ;

⇒ x = 4 + 5 + 4√5

⇒ x = (2)² + (√5)² + 2 * 2 * √5

⇒ x = (2 + √5)²

Also,

⇒ √x = √(2 + √5)²

⇒ √x = 2 + √5

Find the value of 1/√x ;

 \frac{1}{ \sqrt{x} }  =  \frac{1}{2 +  \sqrt{5} }  \\  \\ \frac{1}{ \sqrt{x} }  =  \frac{1}{2 +  \sqrt{5} }  \times   \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\  \\ \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{5} }{(2) {}^{2} - ( \sqrt{5}) {}^{2} }  \\  \\ \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{5} }{4 - 5}  \\  \\ \frac{1}{ \sqrt{x} }  =  - (2  -  \sqrt{5} ) \\  \\ \frac{1}{ \sqrt{x} }  =  \sqrt{5}  - 2

Find the value of √x + 1/√x,

 \sqrt{x}  + \frac{1}{ \sqrt{x} }  = 2 +  \sqrt{5}  +  \sqrt{5}  - 2 \\  \\\sqrt{x}  + \frac{1}{ \sqrt{x} }  =  \sqrt{5} +  \sqrt{5}  \\  \\ \boxed{ \bf \therefore \:  \sqrt{x}  + \frac{1}{ \sqrt{x} }  = 2 \sqrt{5}}

Similar questions