Math, asked by gomesajay3189, 1 month ago

If x= 9-4√5 , Find x-1/x

Answers

Answered by OnlyStudyxD
15

 \sf \implies \red{\: x - \dfrac{1}{x}} \\  \\

 \sf \implies\dfrac{1}{x} = \dfrac{1}{9 + \sqrt[4]{5} }=9+451

 \sf  \implies\: = \dfrac{1}{9 + \sqrt[4]{5} } \times \dfrac{9 - \sqrt[4]{5} }{9 - \sqrt[4]{5} }=9+451×9−459−45

 \implies\sf\dfrac{9 - \sqrt[4]{5} }{( {9})^{2} - ( { \sqrt[4]{5} } })^{2}

 \implies\dfrac{9 - \sqrt[4]{5} }{81 - 80}=81−809−45

\sf \implies \dfrac{1}{x} = 9 - \sqrt[4]{5}x=9−45

According to question:-

 \implies  \sf \: x - \dfrac{1}{x}

 \implies  \sf \: 9 + \sqrt[4]{5} - (9 - \sqrt[4]{5} )9+45−(9−45)

 \sf \: = 9 + \sqrt[4]{5} - 9 + \sqrt[4]{5}=9+45−9+45

 \sf= \sqrt[4]{5} + \sqrt[4]{5}=45+45

 \red{ \sf \: = 2( \sqrt[4]{5} )=2(45)}

Similar questions