Math, asked by Yuvrajsingh099, 1 year ago

if x = 9 + 4√5, find √x - 1 / √x

Answers

Answered by gsnarayana
2
x=5+4+2(2)√5
x=(
√5)^2+(2)^2+2(2)√5
x=(
√5+2)^2
√x=√5+2
1/
√x=1/√5+2
          =
√5-2/5-4
              =
√5-2
√x - 1 / √x=√5+2-(√5-2)
                  =√5+2-√5+2
                    =4

gsnarayana: plz plz mark as brainlist
Yuvrajsingh099: How to mark.
gsnarayana: after atul complete to answer then you will get this option to mark
gsnarayana: now you has option
gsnarayana: please mark now
gsnarayana: whats this yuraj
Answered by atul103
23
Hello yuvraj!

#ur Ans
__________

Given that
X = 9+4√5
so

 \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \\ \\  now \: rationalising \: denometer \\  \\  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  =  >  \frac{1}{x}  =  \frac{9 - 4 \sqrt{5} }{ {9}^{2}  - (4 \sqrt{5}  {)}^{2} }  \\  \\  =  >  \frac{1}{x}  =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  =  >  \frac{1}{x}  = 9 - 4 \sqrt{5}  \\  \\ now \\  \\ ( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  {)}^{2}  = x +  \frac{1}{x}  + 2 \\  \\  =  > ( \sqrt{x}  +  \frac{1}{ \sqrt{x} {}^{}  }  {)}^{2}  = 9 + 4 \sqrt{5 }  + 9  - 4 \sqrt{5}  + 2 \\  \\  =  > ( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  {)}^{2}  = 20 \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{20}  \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 2 \sqrt{5}  \: ans

☺✌:-)

#mark as brainlist

Yuvrajsingh099: Thank you i am searching this question over two days.
Similar questions