Math, asked by TiwariVaishnavi, 1 year ago

If x= 9+4√5 find √x+1/√x??

Answers

Answered by gaurav2013c
7

x = 9 + 4 \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \\  \\  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\    \frac{1}{x}  =  \frac{(9 - 4 \sqrt{5} )}{81 - 80}  \\  \\  = 9 - 4 \sqrt{5}

Now,

x + 1/x = 9 + 4root5 + 9 - 4 root5

=> x + 1/x = 18

On adding 2 in both sides, we get

x + 1/x + 2 = 18 + 2

 {( \sqrt{x} )}^{2}   +   { (\frac{1}{ \sqrt{x} }) }^{2}   + 2( \sqrt{x} )( \frac{1}{ \sqrt{x} } ) = 20 \\  \\   {( \sqrt{x}  +  \frac{1}{ \sqrt{x} }) }^{2}  = 20 \\  \\   \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 2 \sqrt{5}

TiwariVaishnavi: Can u explain the √x one
gaurav2013c: (root x)^2 = x
gaurav2013c: and ( 1/ root x)^2 = 1/ x
TiwariVaishnavi: hm thanks got it
TiwariVaishnavi: not bigger than u lol
siddhartharao77: dont chat here..please!
Answered by siddhartharao77
13

 Given : x = 9 + 4\sqrt{5}


 = > \sqrt{x} = \sqrt{9 + 4\sqrt{5}}


 = > \sqrt{x} = \sqrt{(\sqrt{5})^2 + 2^2 + 2 * 2 * \sqrt{5}}


 = > \sqrt{x} = \sqrt{(\sqrt{5} + 2)^2}


 = > \sqrt{x} = \sqrt{5} + 2


Now,


 = > \frac{1}{\sqrt{5} + 2} * \frac{\sqrt{5} - 2}{\sqrt{5} - 2}


 = > \frac{\sqrt{5} - 2}{5 - 4}


 = > \sqrt{5} - 2


Therefore:


 = > \sqrt{x} + \frac{1}{\sqrt{x}}  = (\sqrt{5} + 2) + (\sqrt{5} - 2)


 = > 2\sqrt{5}



Hope this helps!


TiwariVaishnavi: thats what answer i want thanks
siddhartharao77: welcome
Similar questions