Math, asked by 93043gautamgupta, 2 days ago

if x=9-4√5,find x 2+1/X2​

Answers

Answered by sadnesslosthim
33

☀️ Answer :  Value of x² + 1/x² is 322.

Given that : If x = 9 - 4√5

Need to find : Value of x² + 1/x²

⠀━━━━━━━━━━━━━━━━━━━  

❍  Solution for the same is ::  

\sf : \; \implies ( x )^{2} + \bigg( \dfrac{1}{x} \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{1}{9-4\sqrt{5} } \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{1}{9-4\sqrt{5}} \times \dfrac{9+ 4\sqrt{5}}{9 + 4 \sqrt{5}} \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{1 \times [ \; 9 + 4 \sqrt{5} \; ]}{ [ \; 9-4\sqrt{5} \; ] \times [ \; 9 + 4 \sqrt{5} \; ] }  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{9 + 4 \sqrt{5}}{ [ \; 9-4\sqrt{5} \; ] \times [ \; 9 + 4 \sqrt{5} \; ] }  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{9 + 4 \sqrt{5}}{[ \; 9 \; ]^{2} - [ \; 4\sqrt{5} \; ]}  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{9 + 4 \sqrt{5}}{[ \; 9 \; ]^{2} - [ 16 \times 5 ]}  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{9 + 4 \sqrt{5}}{81- 80}  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + \bigg( \dfrac{9 + 4 \sqrt{5}}{1}  \bigg)^{2}

\sf : \; \implies ( 9 - 4\sqrt{5} )^{2} + ( 9 + 4 \sqrt{5} )^{2}

\sf : \; \implies \{ 9^{2} - 72\sqrt{5} + 16(\sqrt{5})^{2} \} + ( 9 + 4 \sqrt{5} )^{2}

\sf : \; \implies \{ 81 - 72\sqrt{5} + 16 \times 5 \} + ( 9 + 4 \sqrt{5} )^{2}

\sf : \; \implies \{ 81 - 72\sqrt{5} + 80 \} + ( 9 + 4 \sqrt{5} )^{2}

\sf : \; \implies \{ 161 - 72\sqrt{5}  \} + ( 9 + 4 \sqrt{5} )^{2}

\sf : \; \implies \{ 161 - 72\sqrt{5}  \} + \{ 9^{2} + 72\sqrt{5} + 16( \sqrt{5})^{2} \}

\sf : \; \implies \{ 161 - 72\sqrt{5}  \} + \{ 81 + 72\sqrt{5} + 16 \times 5 \}

\sf : \; \implies \{ 161 - 72\sqrt{5}  \} + \{ 81 + 72\sqrt{5} + 80 \}

\sf : \; \implies \{ 161 - 72\sqrt{5}  \} + \{161 + 72\sqrt{5} \}

\sf : \; \implies 161 - 72\sqrt{5}  + 161 + 72\sqrt{5}

\sf : \; \implies (  161 + 161 )  +  ( 72\sqrt{5}- 72\sqrt{5} )

\sf : \; \implies 322 + 0

\boxed{\bf{ \bigstar \;\; x^{2} + \dfrac{1}{x^{2}} = 322 }}

⠀━━━━━━━━━━━━━━━━━━━  

  • Henceforth, the value of  x² + 1/x² is 322.
Similar questions