Math, asked by varsha145, 1 year ago

if x= 9+4√5 then find= x^3+1/x^3.

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
x = 9 + 4 \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} } \\   \\  on \: rationalizing \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  using \: the \: identity \\ (a + b)(a  - b) =  {a }^{2}  -  {b}^{2}  \\  \\  \frac{1}{x}  =  \frac{9 - 4 \sqrt{5} }{ {(9)}^{2} -  {(4 \sqrt{5} )}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{9 - 4 \sqrt{5} }{81 - 16 \times 5}  \\  \\  \frac{1}{x}  =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{x}  = 9 - 4 \sqrt{5}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  \\  \\ using \: the \: identities \\  {(a + b)}^{3}   =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)  \\  {(a - b)}^{3} =  {a}^{3}  -  {b}^{3}   - 3ab(a - b) \\  \\   {(9 + 4 \sqrt{5} )}^{3}  + (9 - 4 \sqrt{5} )^{3}  \\  \\  = ( {(9)}^{3}  +  {(4 \sqrt{5}) }^{3}  + 3 \times 9 \times 4 \sqrt{5} (9  + 4 \sqrt{5} ) \\  + ( {(9)}^{3}  -  {(4 \sqrt{5} )}^{3}  - 3 \times 9 \times 4 \sqrt{5} (9 - 4 \sqrt{5} ) \\  \\  = (729 + 320 \sqrt{5}  + 108 \sqrt{5} (9 + 4 \sqrt{5} ) \\  + (729 - 320 \sqrt{5}  - 108 \sqrt{5} (9 - 4 \sqrt{5} ) \\  \\   = (729 + 320 \sqrt{5}  + 108 \sqrt{5}  \times 9 + 108 \sqrt{5}   \times  4 \sqrt{5} ) \\  + (729 - 320 \sqrt{5}   -  108 \sqrt{5}  \times 9 + 108 \sqrt{5}  \times 4 \sqrt{5} ) \\  \\  = (729 + 320 \sqrt{5} +  972 \sqrt{5}  + 2160) \\  + (729 - 320 \sqrt{5}  - 972 \sqrt{5}  + 2160) \\  \\  = 729 + 320 \sqrt{5 }  + 972 \sqrt{5}  + 2160 \\  + 729  - 320 \sqrt{5}  - 972 \sqrt{5}  + 2160 \\  \\  = 729 + 729 + 2160 + 2160  \\  \\  = 5778

Hope this helps!!!!

@Mahak24

Thanks...
☺☺

varsha145: thank u for your answer
DaIncredible: my pleasure... Hope you liked it
DaIncredible: thanks for brainliest ^_^
Similar questions