Math, asked by Shashishekar3228, 9 months ago

If x=9-4√5 then find x^6+1/x^6

Answers

Answered by stylishtamilachee
7

Answer:

= > x = 9 - 4\sqrt5

= > 1/x = 1/9-4\sqrt5

By rationalization:

= > 1/x = (9+4\sqrt5)/(9-4\sqrt5)(9+4\sqrt5)

= > 1/x = (9+4\sqrt5)(81-80)

= > 1/x = 9 + 4\sqrt5

Therefore,

= > x + 1/x = 9-4\sqrt5 + 9 + 4\sqrt5

= > x + 1/x = 18

Square on both sides:

= > x^2+1/x^2+2=324

= > x^2+1/x^2=322

Cube on both sides:

= > x^6+1/x^6 +3(x^2+1/x^2) = 33386248

= > x^6 + 1/x^6 = 33385282

Answered by Anonymous
14

\huge{\underline{\mathtt{\red{Solution:-}}}}

\star \: {\sf{\green{Given}}}

  \star{\tt{If\: x \: = 9-4\sqrt{5}}} \\  \\

\star \: {\sf{\blue{To \: Find:-}}}

  \star{\tt{\frac{x^6+1}{x^6}}} \\  \\

{\bf{\underline{Solution:- }}}

{\implies{\tt{x \: = 9- 4\sqrt{5}}}} \\  \\

{\implies{\tt{\frac{1}{x} =\frac{1} {9- 4\sqrt{5}}}}} \\ \\

By rationalizing,

{\implies{\tt{\frac{1}{x} = \frac{(9+4\sqrt{5})}{(9-4\sqrt{5})(9+4\sqrt{5})}}}} \\  \\

{\implies{\tt{\frac{1}{x} =\frac{1} {9+ 4\sqrt{5}}}}} \\ \\

NoW,

{\implies{\tt{\frac{x+1}{x} = \frac{9-4\sqrt{5}}{+9-4\sqrt{5}}}}} \\  \\

{\implies{\tt{\frac{x+1}{x} = 18}}} \\ \\

{\bf{\underline{By, \: Squaring \: both \: sides, \: We get ,}}} \\  \\

{\implies{\tt{\frac{x^2+1}{x^2+2} = 324}}}  \\ \\

{\implies{\tt{\frac{x^2+1}{x^2} = 322}}}  \\ \\

{\bf{\underline{By, \: Cubing \: both \: sides, }}} \\  \\

{\implies{\tt{\frac{x^6+1}{x^6+3}( \frac{x^2+1}{x^2}) = 33386248}}} \\ \\

{\implies{\tt{\frac{x^6+1}{x^6} = 33385282}}} \\  \\

Similar questions