Math, asked by NandaniRaghuwanshi, 5 months ago

if x=9+4√5and xy=1,then find 1/x^2+1/y^2​

Answers

Answered by mathdude500
4

Answer:

Please find the attachment.

Attachments:
Answered by BrainlyPopularman
14

GIVEN :

x = 9+4√5 and xy = 1

TO FIND :

• Value of 1/x² +1/y² = ?

SOLUTION :

  \\ \implies\bf x = 9+4 \sqrt{5}\\

• And –

 \\\implies\bf xy=1\\

 \\\implies\bf(9+4 \sqrt{5})y=1\\

 \\\implies\bf y= \dfrac{1}{9+4 \sqrt{5}}\\

 \\\implies\bf y= \dfrac{1}{9+4 \sqrt{5}} \times\dfrac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} } \\

 \\\implies\bf y= \dfrac{9- 4 \sqrt{5} }{(9)^{2}  - (4 \sqrt{5})^{2} } \\

 \\\implies\bf y= \dfrac{9- 4 \sqrt{5} }{81-80} \\

 \\\implies\bf y= \dfrac{9- 4 \sqrt{5} }{1} \\

 \\\implies\bf y=9- 4 \sqrt{5}\\

• Now Let's find –

 \\\implies\bf P = \dfrac{1}{ {x}^{2}} +  \dfrac{1}{ {y}^{2} }  \\

 \\\implies\bf P = \dfrac{ {x}^{2} +  {y}^{2} }{({x}^{2})( {y}^{2} )}\\

 \\\implies\bf P = \dfrac{ {x}^{2} +  {y}^{2} }{{(xy)}^{2}}\\

 \\\implies\bf P = \dfrac{ {(x + y)}^{2} - 2xy}{{(xy)}^{2}}\\

• Now put the values –

 \\\implies\bf P = \dfrac{ {(9+4 \sqrt{5}+9 - 4 \sqrt{5})}^{2} - 2(1)}{{(1)}^{2}}\\

 \\\implies\bf P = \dfrac{ {(9+9)}^{2} - 2(1)}{{(1)}^{2}}\\

 \\\implies\bf P = \dfrac{ {(18)}^{2} - 2}{1}\\

 \\\implies\bf P =324 - 2\\

 \\\implies\bf P =322\\

• Hence –

 \\\implies \large \green{ \boxed{\bf\dfrac{1}{ {x}^{2}} +  \dfrac{1}{{y}^{2}}=322}}\\

Similar questions