If x = 9 - 4 root 5 , find x^2 - 1/ x^2 and x^3 + 1/x^3 .
Answers
Answered by
55
x=9-4√5
∴, 1/x=1/(9-4√5)
=(9+4√5)/(9-4√5)(9+4√5)
=(9+4√5)/{(9)²-(4√5)²}
=(9+4√5)/(81-80)
=9+4√5
∴, x²-1/x²
=(x+1/x)(x-1/x)
=(9-4√5+9+4√5)(9-4√5-9-4√5)
=(18)(-8√5)
=-144√5
x³+1/x³
=(x+1/x)³-3·x·1/x(x+1/x)
=(9-4√5+9+4√5)³-3(9-4√5+9+4√5)
=(9)³-3(9)
=729-27
=702
∴, 1/x=1/(9-4√5)
=(9+4√5)/(9-4√5)(9+4√5)
=(9+4√5)/{(9)²-(4√5)²}
=(9+4√5)/(81-80)
=9+4√5
∴, x²-1/x²
=(x+1/x)(x-1/x)
=(9-4√5+9+4√5)(9-4√5-9-4√5)
=(18)(-8√5)
=-144√5
x³+1/x³
=(x+1/x)³-3·x·1/x(x+1/x)
=(9-4√5+9+4√5)³-3(9-4√5+9+4√5)
=(9)³-3(9)
=729-27
=702
Answered by
12
Answer:
Step-by-step explanation:
X=9-4√5
∴, 1/x=1/(9-4√5)
=(9+4√5)/(9-4√5)(9+4√5)
=(9+4√5)/{(9)²-(4√5)²}
=(9+4√5)/(81-80)
=9+4√5
∴, x²-1/x²
=(x+1/x)(x-1/x)
=(9-4√5+9+4√5)(9-4√5-9-4√5)
=(18)(-8√5)
=-144√5
x³+1/x³
=(x+1/x)³-3·x·1/x(x+1/x)
=(9-4√5+9+4√5)³-3(9-4√5+9+4√5)
=(9)³-3(9)
=729-27
=702
Read more on Brainly.in - https://brainly.in/question/799162#readmore
Similar questions
Math,
8 months ago
Computer Science,
1 year ago