Math, asked by basit6910, 1 year ago

if x=9-4â5,then find the value of x^2+1/x^2

Answers

Answered by Eustacia
0

  {x}^{2}  +  \frac{1}{ {x}^{2} }  \: =  \:  ? \:   \\ \\ x = 9 - 4 \sqrt{5}  \\ x =  {(2 -  \sqrt{5} )}^{2}  \\  \\  \frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  = 9 + 4 \sqrt{5}  \\  \\  \frac{1}{x}   =  {(2 -  \sqrt{5} )}^{2} \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  =   ({{x +  \frac{1}{x}})}^{2}   - 2(x)( \frac{1}{x} ) \\  \\ {x}^{2}  +  \frac{1}{ {x}^{2} }  =    {18}^{2}  \:  -  \: 2 \:  \\  \\  \\   \bf \: \large \boxed{{x}^{2}  +  \frac{1}{ {x}^{2} }  =   322}

Similar questions