Math, asked by ankit7348, 1 year ago

if x 9-4root 5 find value of x2-1/x2

Answers

Answered by BrainlyKai
25
ʜᴇʟʟᴏ ᴍᴀᴛᴇ!

x = 9 - 4√5

1/x = 1/( 9 - 4√5 )

Rationalize

1/( 9 - 4√5 ) × ( 9 + 4√5 )/( 9 + 4√5 )

( 9 + 4√5 )/[ 9² - (4√5)² ] = ( 9 + 4√5 )/( 81 - 80 )

= 9 + 4√5

x² = ( 9 - 4√5 )² = 81 + 80 - 72√5

(1/x)² = ( 9 + 4√5 )² = 81 + 80 + 72√5

161 - 72√5 - 161 - 72√5 = - 144√5

Or

x² - (1/x)² = ( x + 1/x )( x - 1/x )

( 9 - 4√5 + 9 + 4√5 )[ 9 - 4√5 - ( 9 + 4√5 ) ]

( 18 ) ( - 8√5 ) = - 144√5

Hope it helps
Answered by BrainlyQueen01
36
Hey mate!

_______________________

Given :

x = 9 - 4 \sqrt{5}

To find :

x {}^{2}  -  \frac{1}{x {}^{2} }

Solution :

x = 9 - 4 \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9  +  4 \sqrt{5}  }{9 + 4 \sqrt{5} }  \\  \\  \frac{1}{x}  =  \frac{9  +  4 \sqrt{5} }{(9) {}^{2} - (4 \sqrt{5}) {}^{2}   }  \\  \\  \frac{1}{x}  =  \frac{9  + 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{x}  = 9 + 4 \sqrt{5}

Now,

x  {}^{2}  = (9 - 4 \sqrt{5} ) {}^{2}  \\  \\ x {}^{2}  = (9) {}^{2}  + (4 \sqrt{5})  {}^{2}  - 2 \times 9 \times 4 \sqrt{5}  \\  \\ x {}^{2}  = 81 + 80 - 72 \sqrt{5}  \\  \\ x {}^{2}  =16 1 - 72 \sqrt{5}

And,

( \frac{1}{x} ) {}^{2}  = (9 + 4 \sqrt{5} ) {}^{2}  \\  \\  \frac{1}{x {}^{2} }  =( 9 ){}^{2}  + (4 \sqrt{5} ) {}^{2}  + 2 \times 2 \times 4 \sqrt{5}  \\  \\  \frac{1}{x {}^{2} }  = 81 + 80 + 72 \sqrt{5}  \\  \\  \frac{1}{x {}^{2} }  = 161 + 72 \sqrt{5}

Finally,

x {}^{2}   -  \frac{1}{x {}^{2} }  \\  \\  \implies 161 - 72 \sqrt{5}  - (161 + 72 \sqrt{5} ) \\  \\  \implies  \cancel{161} - 72 \sqrt{5}  -  \cancel{161} \: - 72 \sqrt{5}  \\  \\  \implies  - 144 \sqrt{5}

_______________________

Thanks for the question!

☺️☺️☺️
Similar questions