Math, asked by Saaaaksham, 1 year ago

if x=9+4root5 , find the value of root x- 1/root x

Answers

Answered by HimanshuR
5

x = 9 - 4 \sqrt{5}  \\  \frac{1}{x } =  \frac{1}{9 - 4 \sqrt{5} }   \\  =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  \\  =  \frac{9 + 4 \sqrt{5} }{(9) {}^{2}  -( 4 \sqrt{5}) {}^{2}  }  =  \frac{9 + 4 \sqrt{5} }{81 - 80 }  \\  \frac{1}{x} = 9 + 4 \sqrt{5}  \\  (\sqrt{x}  +   \frac{1}{ \sqrt{x} }  ) {}^{2}  = ( \sqrt{x} ) {}^{2}  + ( \frac{1}{ \sqrt{x} }) {}^{2} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  + 2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} }  \\  (\sqrt{x}  +  \frac{1}{ \sqrt{x} } ) {}^{2}  = x +  \frac{1}{x} + 2 \\  = 9 - 4 \sqrt{5}  + 9 + 4 \sqrt{5}  \\  = 18 \\ so \:(  \sqrt{x}  +  \frac{1}{ \sqrt{x} } ) {}^{2} = 18 \\ therefore \sqrt{x}   +  \frac{1}{ \sqrt{x} }  =  \sqrt{18}

Saaaaksham: Bro very good but see it's 9+4root 5
Similar questions