Math, asked by bhaianuragarkey, 1 year ago

If x=9+4root5 ,find the value of rootx-1 upon root

Answers

Answered by sushant2505
44
Hi...☺

Here is your answer...✌

GIVEN THAT,

x = 9 + 4 \sqrt{5} \\ \\ x = 4 + 5 + 4 \sqrt{5} \\ \\ x = {2}^{2} + {( \sqrt{5})}^{2} + 2 \times 2 \times \sqrt{5} \\ \\ x ={ (2 + \sqrt{5} )}^{2}

Square rooting both sides
We get,

 \sqrt{x} = \sqrt{ {(2 + \sqrt{5}) }^{2} } \\ \\ \sqrt{x} = 2 + \sqrt{5}

And,

 \frac{1}{ \sqrt{x} } = \frac{1}{2 + \sqrt{5} } \times \frac{2 - \sqrt{5} }{2 - \sqrt{5} } \\ \\ \frac{1}{ \sqrt{x} } = \frac{2 - \sqrt{5} }{ {2}^{2} - {(\sqrt{5})}^{2} } \\ \\ \frac{1}{ \sqrt{x} } = \frac{2 - \sqrt{5} }{4 - 5} = \frac{2 - \sqrt{5} }{ - 1} \\ \\ \frac{1}{ \sqrt{x} } = \sqrt{5} - 2

Now,

 \sqrt{x} - \frac{1}{ \sqrt{x} } = 2 + \sqrt{5} - (\sqrt{5} - 2) \\ \\ = 2 + \sqrt{5} - \sqrt{5} + 2 \\ \\ = 4

sushant2505: :-)
Answered by guneetkathuria82
14

Answer:

answer in image pls refer this

Attachments:
Similar questions