Math, asked by lakhsyamalik221, 3 months ago

if x=9 + 4root5, then find the value of rootx - 1 by root x.​

Answers

Answered by Anonymous
3

GIVEN :-

 \\  \sf \: x = 9 + 4 \sqrt{5}  \\  \\

TO FIND :-

 \\  \sf \:  \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  \\  \\

SOLUTION :-

We have ,

 \\  \sf \: x = 9 +  4\sqrt{5}  \\

Taking reciprocal,

 \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{1}{9 +  4\sqrt{5} }  \\

Rationalising the denominator,

Rationalising factor is (9 - 4√5)

 \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{1}{9 +  4\sqrt{5} }  \times  \dfrac{9 -  4\sqrt{5} }{9 -  4\sqrt{5} }  \\  \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{9 -  4\sqrt{5} }{(9 +  4\sqrt{5})(9 -  4\sqrt{5} ) } \\ \\

In denominator,

(a+b)(a-b) = a² - b²

  • a = 9
  • b = 4√5

Putting values,

 \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{9 -  4\sqrt{5} }{ {9}^{2}  -  {( 4\sqrt{5} )}^{2} }  \\  \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{9 -  4\sqrt{5} }{81 - 80}  \\  \\  \implies\sf \:  \dfrac{1}{x}  =  \dfrac{9 -  4\sqrt{5} }{1}  \\  \\ \implies\underline{  \sf \:  \dfrac{1}{x}  = 9 -  4\sqrt{5} } \\  \\

Now ,

 \\ \sf \: Let \:  \:  \:  \: y =  \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  \\

Squaring both sides,

 \\  \implies\sf \:  {y}^{2}  =  {\left(  \sqrt{x} -  \dfrac{1}{ \sqrt{x} }   \right)}^{2}  \\ \\

(a-b)² = a² + b² - 2ab

  • a = √x
  • b = 1/√x

Putting values,

 \\  \implies\sf \:  {y}^{2}  =  { (\sqrt{x} )}^{2}  +   {\left( \dfrac{1}{ \sqrt{x} }  \right)}^{2}  - 2( \cancel{ \sqrt{x}} )\left(  \dfrac{1}{  \cancel{\sqrt{x} }} \right) \\  \\  \implies\sf \:  {y}^{2}  = x +  \dfrac{1}{x}  - 2 \\  \\

Putting values of x and 1/x..

 \\  \implies\sf \:  {y}^{2}  = 9 +  \cancel{4 \sqrt{5}} + 9 -  \cancel{4 \sqrt{5}}   - 2 \\  \\  \implies\sf \:  {y}^{2}  = 16 \\  \\   \implies\boxed{\sf \: y =  4  \: , \: - 4} \\  \\

Hence ,

 \\   \boxed{\bf \:  \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  = 4 \: ,  - 4}

Similar questions