Math, asked by iamsujan, 10 months ago

if x=a^1/a- a^-1/a ,then prove that x^3+3x= a-1/a

Attachments:

Answers

Answered by RvChaudharY50
51

Solution :-

\sf \: x = a^{\frac{1}{3}} - a^{\frac{-1}{3}} \\  \\  \bf \: cubing \: both \: sides \: we \: get \:  \\  \\ \purple\longmapsto\tt \:  {x}^{3} = (a^{\frac{1}{3}} - a^{\frac{-1}{3}})^{3} \\  \\  \bf \: now \: using\:  \red{\boxed{\bf(x - y)^{3}={x}^{3}-{y}^{3}-3xy(x-y)}} \\  \\ \purple\longmapsto\tt \:  {x}^{3}=\: (a^{\frac{1}{3}})^{3}  - (a^{\frac{-1}{3}})^{3} - 3 \times a \times  \frac{1}{a}(a^{\frac{1}{3}} - a^{\frac{-1}{3}}) \\  \\\purple\longmapsto\tt \:  {x}^{3}=a -  \frac{1}{a} - 3(a^{\frac{1}{3}} - a^{\frac{-1}{3}}) \\  \\  \bf \: putting \: value \: of \: x \: now \: \\  \\  \purple\longmapsto\tt \:  {x}^{3}=a -  \frac{1}{a} - 3x \\  \\  \purple\longmapsto\blue{\boxed{\bf{x}^{3} + 3x=(a -  \frac{1}{a})}}  \:  \: \underline{\boxed{\textbf{\red{P}\blue{r}\green{o}\purple{v}\orange{e}\pink{d}}}}

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\huge\bold{\red{\ddot{\smile}}}}}}}}}}}}}

Answered by Anonymous
70

__________________________

\huge\tt{GIVEN:}

  • if x = a½ - a -½

__________________________

\huge\tt{TO~PROOF:}

  • x³+3x = a - ¹/a

__________________________

\huge\tt{SOLUTION:}

x = a½ - a -½

Firstly,

Cubing both of the sides here....

↪x³ = (a⅓ - a -⅓)³

using (x-y)³= x³-y³-3xy(x-y)

↪x³ = (a⅓)³ - (a-⅓) ³ - 3 × a × ¹/a (a⅓ - a-⅓)

↪x³ = a - ¹/a - 3 (a⅓ - a -⅓)

Putting the value of x here,

↪x³ = a - ¹/a - 3x

↪x³+ 3 = (a - ¹/a)

Hence,Proved.

__________________________

Similar questions