Science, asked by aastik027p6ltraa, 2 months ago

If x = a + 1/a and y = a - 1/a then find the value of x⁴ + y⁴ - 2x²y²​

Answers

Answered by BrainliestUserRank1
3

Answer:

x⁴ + y⁴ - 2x²y² = (16 / a⁴)

Explanation:

mark as brainliest

Answered by Anonymous
130

Given :-

  •  \sf x =  a +  \dfrac{1}{a}  \: \: , \:   \: y = a -  \dfrac{1}{a}

To Find:-

  • The value of  \sf  x⁴ + y⁴ - 2x²y²

Formula used:-

  • \sf{(a+b)²=\green{{\underline{\underline{\pmb{a^{2}+2ab+b^{2}}}}}}}

  • \sf{(a-b)²=\green{{\underline{\underline{\pmb{a^{2}-2ab+b^{2}}}}}}}

Solution:-

We are given :-

  •  \sf \green{x =  a +  \dfrac{1}{a}}

  • \sf\green{ y = a -  \dfrac{1}{a}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀

\sf\pink{ \:  \: \:  \:  \:  \:  \: \: {x}^{4}  +  {y}^{4}  - 2 {x}^{2} {y}^{2}  = ( {x}^{2}  -  {y}^{2})^{2}} \\

\sf\:  \: \:  \:  \:  \:  \: \:: \implies   ( {x}^{2}  -  {y}^{2})^{2}\\

\sf  \:  \: \:  \:  \:  \:  \: \::\implies   \Bigg[ { \bigg(a +  \dfrac{1}{a}} \bigg)^{2}  -{\bigg(a  -  \dfrac{1}{a}} \bigg)^{2}  \Bigg] ^{2} \\

\sf     \:  \: \:  \:  \:  \:  \: \::\implies    \Bigg[ { \bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2 {(a}^{2}  ) \times   \dfrac{1}{ {a}^{2} }  } \bigg)  -{\bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} }  -  2 {(a}^{2}  ) \times   \dfrac{1}{ {a}^{2} }  } \bigg)  \bigg] ^{2} \\

\sf    \:  \: \:  \:  \:  \:  \: \::\implies     \Bigg[ { \bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2   } \bigg)  -{\bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} }  -  2   } \bigg)  \bigg] ^{2}\\

\sf    \:  \: \:  \:  \:  \:  \: \::\implies     \Bigg[ {  {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2   }  -{ {a}^{2}  - \dfrac{1}{ {a}^{2} }   +   2   } \bigg] ^{2}\\

\sf      \:  \: \:  \:  \:  \:  \: \::\implies   \Bigg[ {  {a}^{2}  -  {a}^{2} +  \dfrac{1}{ {a}^{2} } - \dfrac{1}{ {a}^{2} }    + 2+   2   } \bigg] ^{2} \\

\sf     \:  \: \:  \:  \:  \:  \: \::\implies    {(2 + 2)}^{2}\\

\sf      \:  \: \:  \:  \:  \:  \: \pink{\::\implies   {4}^{2}  = 16 }\\

\therefore  \: \underline{\textsf{\textbf{ Value \: of \:x⁴ + y⁴ - 2x²y² \: is \underline{\: 16} }}}

Similar questions