If x=[a(1-t^2)]/(1+t^2), y=2at/(1+t^2), show that dy/dx=(t^2-1)/2t
Answers
Answered by
1
Given x = (1-t2)/(1+t2)
y = 2t/(1+t2)
Put t = tan θ
θ = tan-1 t
x = (1-tan2θ)/(1+tan2θ)
= cos 2θ
y = 2 tan θ/(1 + tan2 θ)
= sin 2θ
x2 = cos2 2θ
y2 = sin2 2θ
Adding both we get
x2 + y2 = 1
Differentiate w.r.t.x
2x + 2y(dy/dx) = 0
dy/dx = -2x/2y
= -x/y
Answer:
Step-by-step explanation:
Similar questions