Math, asked by Vivoy3gt, 8 months ago

If x^a - 2ax + a^2 = 0 FIND VALUE OF x/a

Answers

Answered by abhinavkoolath
2

Answer:

Hi there !!!

Given,

x - a is a factor of

{x}^{3} - ax {}^{2} + 2x + a - 1

we know,

x - a = 0

x = 0+a = a

Substitung the value of x as a,

we have,

(a)^3 - a(a)^2 + 2(a) + a - 1 =0

a^3 - a^3 + 2a + a - 1=0

3a - 1=0

3a =1

a = 1/3

Thus

a = 1/3

Step-by-step explanation:

Hope This Helps Better Or Comment Down,

Please Mark Me As Brainliest

Answered by Anonymous
5

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a Quadratic Polynomial
  • x² - 2ax + a² = 0

To Find:

  • We have to find the value of x/a

Solution:

\bigstar \: \: \underline{\large\mathfrak\orange{We \: have \: been \: given:}}

\hookrightarrow \sf{x^2 - 2ax + a^2 = 0}

Using \boxed{\sf{\green{ {( a + b )}^2 = a^2 + b^2 + 2ab }}}

\hookrightarrow \sf{ {( x - a )}^2 = 0}

Taking square root on both sides

\hookrightarrow \sf{ x - a = \sqrt{0}}

\hookrightarrow \sf{ x - a = 0}

\hookrightarrow \sf{x = a }

Dividing Both Sides by a

\hookrightarrow \sf{\dfrac{x}{a} = 1 } \\

:\implies \boxed{\sf{\red{\dfrac{x}{a} = 1}}}

Hence value of x/a is 1

________________________________

\boxed{\sf{\pink{Some \: Useful  \: Indentities }}}

\implies \sf{{(a+b}^{2} = a^2 + b^2 + 2ab}

\implies \sf{{(a-b)}^{2} = a^2 + b^2 - 2ab}

\implies \sf{{(a+b)}^{3} = a^3 + b^3 + 3ab(a+b)}

\implies \sf{{(a-b)}^{3} = a^3 - b^3 - 3ab(a-b)}

\implies \sf{a^3 + b^3 = (a+b)( a^2 + b^2 - ab) }

\implies \sf{a^3 - b^3= (a-b)(a^2 + b^2 +ab) }

\implies \sf{{(a+b+c)}^{2} = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}

\implies \sf{a^3+b^3+c^3 - 3abc= (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca) }

___________________________

Similar questions