if x=[√(a+2b)+√(a-2b)]/[√(a+2b)-√(a-2b)],then evaluate bx²-ax+b.plz give answer fast because I am learning for an exam.I will mark the answer as brainliest.
Answers
Answered by
0
Answer:
bx² - ax + b = 0
Step-by-step explanation:
if x=[√(a+2b)+√(a-2b)]/[√(a+2b)-√(a-2b)],then evaluate bx²-ax+b
x = [√(a+2b)+√(a-2b)]/[√(a+2b)-√(a-2b)]
Rationalizing
x = [√(a+2b)+√(a-2b)]/[√(a+2b)-√(a-2b)] * [√(a+2b)+√(a-2b)]/[√(a+2b)+√(a-2b)]
=> x = [a +2b + a - 2b + 2 √a² - 4b² ]/ [a + 2b - (a - 2b)]
=> x = 2(a + √a² - 4b²) / 4b
=> 2bx = a + √a² - 4b²
=> 2bx - a = √a² - 4b²
Squaring both sides
=> 4b²x² + a² - 4abx = a² - 4b²
=> 4b²x² - 4abx + 4b² = 0
dividing by 4b
=> bx² - ax + b = 0
Answered by
1
Similar questions