If X = a + 3b + 4c, Y = −a + 8b − 2c and Z = −11a + 2b − 3c, ind (X + Y − Z)
Answers
Answered by
3
Question :-
If X = a + 3b + 4c, Y = −a + 8b − 2c and Z = −11a + 2b − 3c, find (X + Y − Z).
Given :-
- X = a + 3b + 4c
- Y = -a + 8b - 2c
- Z = -11a + 2b - 3c
To find :-
X + Y - Z
Let us substitute the values for X,Y and Z respectively.
(a + 3b + 4c) + (-a + 8b - 2c) - (-11a + 2b - 3c)
[Here (-) is being multiplied with the (+) and (-) respectively, so the signs change accordingly]
By removing the brackets,
a + 3b + 4c - a + 8b - 2c + 11a - 2b + 3c
Grouping all the like terms,
(a - a + 11a) + (3b + 8b - 2b) + (4c - 2c + 3b)
=> 11a + 9b + 5c
hence,
X + Y - Z = 11a + 9b + 5c
Important points to note :-
- (-) × (-) = (+)
- (+) × (+) = (+)
- (+) × (-) = (-)
- (-) × (+) = (-)
Hope it helps!
Happy day!
Similar questions