Math, asked by rishitejani4346, 4 months ago

If X = a + 3b + 4c, Y = −a + 8b − 2c and Z = −11a + 2b − 3c, ind (X + Y − Z)

Answers

Answered by AstroPaleontologist
3

Question :-

If X = a + 3b + 4c, Y = −a + 8b − 2c and Z = −11a + 2b − 3c, find (X + Y − Z).

Given :-

  • X = a + 3b + 4c
  • Y = -a + 8b - 2c
  • Z = -11a + 2b - 3c

To find :-

X + Y - Z

Let us substitute the values for X,Y and Z respectively.

(a + 3b + 4c) + (-a + 8b - 2c) - (-11a + 2b - 3c)

                                              [Here (-) is being multiplied with the (+) and (-) respectively, so the signs change accordingly]

By removing the brackets,

a + 3b + 4c - a + 8b - 2c + 11a - 2b + 3c

Grouping all the like terms,

(a - a + 11a) + (3b + 8b - 2b) + (4c - 2c + 3b)

=> 11a + 9b + 5c

hence,

X + Y - Z = 11a + 9b + 5c

Important points to note :-

  • (-) × (-) = (+)
  • (+) × (+) = (+)
  • (+) × (-) = (-)
  • (-) × (+) = (-)

Hope it helps!

Happy day!

Similar questions