If x= (√a+√b)/(√a-√b) and y=(√a-√b)/(√a+√b) then x2+xy+y2=
Answers
Answered by
7
x=(√a+√b)/(√a-√b) and y=(√a-√b)/(√a+√b)
∴, x+y=(√a+√b)/(√a-√b)+(√a-√b)/(√a+√b)
={(√a+√b)²+(√a-√b)²}/{(√a)²-(√b)²}
=(a+2√ab+b+a-2√ab+b)/(a-b)
=2(a+b)/(a-b) and
xy=(√a+√b)/(√a-√b)×(√a-√b)/(√a+√b)
=1
∴, x²+xy+y²
={(x+y)²-2xy}+xy
={2(a+b)/(a-b)}²-2×1+1
=4(a+b)²/(a-b)²-2+1
=4(a²+2ab+b²)/(a²-2ab+b²)-1
=(4a²+8ab+4b²-a²+2ab-b²)/(a²-2ab+b²)
=3a²+10ab+3b²/a²-2ab+b²
∴, x+y=(√a+√b)/(√a-√b)+(√a-√b)/(√a+√b)
={(√a+√b)²+(√a-√b)²}/{(√a)²-(√b)²}
=(a+2√ab+b+a-2√ab+b)/(a-b)
=2(a+b)/(a-b) and
xy=(√a+√b)/(√a-√b)×(√a-√b)/(√a+√b)
=1
∴, x²+xy+y²
={(x+y)²-2xy}+xy
={2(a+b)/(a-b)}²-2×1+1
=4(a+b)²/(a-b)²-2+1
=4(a²+2ab+b²)/(a²-2ab+b²)-1
=(4a²+8ab+4b²-a²+2ab-b²)/(a²-2ab+b²)
=3a²+10ab+3b²/a²-2ab+b²
Answered by
4
We use rationalization of denominators.
x y = 1 as we can see that y = 1/x
x = (√a + √b) / (√a - √b)
= (√a + √b)² / [ (√a - √b) (√a + √b) ]
= [a + b + 2 √(ab) ] / [a - b]
y = (√a - √b) / (√a + √b)
= (√a - √b)² / [ (√a + √b) (√a - √b) ]
= (a + b - 2 √(ab) ] / (a - b)
x+y = 2(a+b)/(a-b)
xy = 1
x² + xy + y²
= (x + y)² - x y
= 4 (a+b)² / (a-b)² - 1
= [4 (a+b)² - (a-b)² ] / (a-b)²
= [ 3 a² + 3 b² + 10 ab ] / (a-b)²
= 3 + 16 ab/(a-b)²
x y = 1 as we can see that y = 1/x
x = (√a + √b) / (√a - √b)
= (√a + √b)² / [ (√a - √b) (√a + √b) ]
= [a + b + 2 √(ab) ] / [a - b]
y = (√a - √b) / (√a + √b)
= (√a - √b)² / [ (√a + √b) (√a - √b) ]
= (a + b - 2 √(ab) ] / (a - b)
x+y = 2(a+b)/(a-b)
xy = 1
x² + xy + y²
= (x + y)² - x y
= 4 (a+b)² / (a-b)² - 1
= [4 (a+b)² - (a-b)² ] / (a-b)²
= [ 3 a² + 3 b² + 10 ab ] / (a-b)²
= 3 + 16 ab/(a-b)²
Similar questions