Math, asked by elvis2004, 1 year ago

if x =a-b/a+b, y=b-c/b+c, z=c-a/c+a, then find the value of (1+x)(1+y)1+z)/1-x)(1-y)(1-z).​

Answers

Answered by rishu6845
30

give me best ans and thanks plzzzzz

Attachments:
Answered by slicergiza
25

Answer:

Answer would be -1

Step-by-step explanation:

Given,

x=\frac{a-b}{a+b}, y =\frac{b-c}{b+c}, z=\frac{c-a}{c+a}----(1)

\implies 1+x =1+\frac{a-b}{a+b}, 1+y=1+\frac{b-c}{b+c}, 1+z=1+\frac{c-a}{c+a}

\implies 1+x =\frac{a+b+a-b}{a+b}, 1+y=\frac{b+c+b-c}{b+c}, 1+z=\frac{c+a+c-a}{c+a}

\implies 1+x =\frac{2a}{a+b}, 1+y=\frac{2b}{b+c}, 1+z=\frac{2c}{c+a}---(2)

Again from equation (1),

\implies 1-x =1-\frac{a-b}{a+b}, 1-y=1-\frac{b-c}{b+c}, 1-z=1-\frac{c-a}{c+a}

\implies 1-x =\frac{a+b-a+b}{a+b}, 1-y=\frac{b+c-b+c}{b+c}, 1-z=\frac{c+a-c+a}{c+a}

\implies 1-x =\frac{2b}{a+b}, 1-y=\frac{2c}{b+c}, 1-z=\frac{2a}{c+a}---(3)

From equation (2) and (3),

\frac{1+x}{1-x}=\frac{a}{b}, \frac{1+y}{1-y}=\frac{b}{c}, \frac{1+z}{1-z}=\frac{c}{a}

\implies \frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}=\frac{abc}{abc}=1

Learn more :

If if a^\frac{1}{x}=b^\frac{1}{y}=c^\frac{1}{z} , b^2=ac , then find the value of \frac{x+z}{2y}

https://brainly.in/question/12385336

If a^x=b^y=c^z \text{ and }y=(xz)^\frac{1}{2}, find the value of \frac{\log a\times \log c}{(\log b)^2},

https://brainly.in/question/4752374

Similar questions