If x=a-b/a+b,y=b-c/b+c,z=c-a/c+a,then the value of (1+x)(1+y)(1+z)/(1-x)(1-y)(1-z) is
Answers
Answered by
2
Answer:
x=a-b/a+b
y=b-c/b+c
z=c-a/c+a
now,
(1+x)(1+y)(1+z)/(1-x)(1-y)(1-z)
=(1+a-b/a+b)(1+b-c/b+c)(1+c-a/c+a)/{1-(a-b/a+b)} {1-(b-c/b+c)} {1-(c-a)(c+a)}
=(a+b+a-b/a+b)(b+c+b-c/b+c)(c+a+c-a/c+a)(a+b-a+b/a+b)(b+c-b+c/b+c)(c+a-c+a/c+a)
={(2a/a+b)(2b/b+c)(2c/c+a)}/{(2b/a+b)(2c/b+c)(2a/c+a)}
=1
Similar questions