If x=a(b-c), y=b(c-a), z=c(a b) then prove that (x/a) ^3+(y/b) ^3+(z/c) ^3 = 3xyz/abc?
Answers
Answered by
1
we know
a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
we have,
x=a(b-c) or x/a=(b-c)
y=b(c-a) or y/b=(c-a)
z=c(a-b) or z/c=(a-b)
now,
(x/a)^3+(y/b)^3+(z/c)^3–3(x/a)(y/b)(z/c)
=(x/a+y/b+z/c){(x/a)^2+(y/b)^2+(z/c)^2-(x/a)(y/b)-(y/b)(z/c)-(z/c)(x/a)}
={(b-c)+(c-a)+(a-b)}{ same}
={b-c+c-a+a-b}{ same }
=0{ same }=0
so
(x/a)^3+(y/b)^3+(z/c)^3=3(x/a)(y/b)(z/c)
=3xyz/abc proved
Answered by
1
x=a(b-c)
→x/a=b-c----(1)
y=b(c-a)
→y/b=c-a -----(2)
z=c(a-b)
→z/c=a-b-------(3)
Now, (1)+(2)+(3) gives
x/a+y/b+z/c=b-c+c-a+a-b=0
we know that, when p+q+r=0,p³+q³+r³=3pqr
Then,
(x/a)³+(y/b)³+(z/c)³=3(x/a)(y/b)(z/c)
=3xyz/abc
#BE BRAINLY
Similar questions
Math,
6 months ago
Math,
6 months ago
Chemistry,
6 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago