Math, asked by bellanasantoshi28, 1 month ago

if x=a+b,y=aw+bw2,z=aw2+bw show that x3+y3+z3=3(a3+b3)​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{ \blue{x = a + b}} \\   \:  \:  \:  \:  \:  \:  \:  \: \tt{ \blue{y = a \omega + b \omega^{2} }} \\   \:  \:  \:  \:  \:  \:  \: \tt{ \blue{z = a  \omega^{2} + b \omega}}

Now,

 \sf{x + y + z = (a + b) + (a \omega + b \omega^{2} ) +(a \omega^{2} + b \omega ) }

 \sf{ \implies  \: x + y + z = (a  + a \omega +a \omega^{2}) +( b +  b \omega  + b \omega^{2} )  }

 \sf{ \implies  \: x + y + z =a (1  + \omega + \omega^{2}) +b( 1 +   \omega  +  \omega^{2} )  }

 \sf{ \implies  \: x + y + z =a (0) +b( 0 )  }

 \sf{ \implies  \: x + y + z  = 0   }

So,

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3xyz   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3(a + b)(a \omega + b \omega^{2} )(a \omega^{2}  +  b \omega)   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3(a ^{2}  \omega + ab \omega^{2} +ab \omega +  {b}^{2}  \omega^{2}   )(a \omega^{2}  +  b \omega)   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 \{a ^{2}  \omega + ab (\omega^{2} + \omega) +  {b}^{2}  \omega^{2}    \}(a \omega^{2}  +  b \omega)   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 \{a ^{2}  \omega + ab ( - 1) +  {b}^{2}  \omega^{2}    \}(a \omega^{2}  +  b \omega)   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 (a ^{2}  \omega  -  ab +  {b}^{2}  \omega^{2}    )(a \omega^{2}  +  b \omega)   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 (a ^{3}  \omega  ^{3}  -  a^{2} b \omega^{2}  +  a{b}^{2}  \omega^{4}   +  {a}^{2}b \omega^{2}  - ab^{2}   \omega +   {b}^{3}  \omega^{3}   )   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 (a ^{3}   -  a^{2} b \omega^{2}  +  a{b}^{2}  \omega^{3}  \cdot \omega  +  {a}^{2}b \omega ^{2}  - ab^{2}   \omega +   {b}^{3}     )   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 (a ^{3}   -  a^{2} b \omega^{2}  +  a{b}^{2}\omega  +  {a}^{2}b \omega ^{2}  - ab^{2}   \omega +   {b}^{3}     )   }

 \sf{ \implies  \: x^{3}  + y^{3}  + z^{3}   = 3 (a ^{3}   +   {b}^{3}     )   }

Similar questions