Math, asked by abhishekvanagara7, 1 month ago

If x=a cos 0;y=bsin 0 then eliminate 0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = a \: cos\theta

and

\rm :\longmapsto\:y \:  =  \: b \: sin\theta

\large\underline{\sf{To\:Find - }}

\red{\bf :\longmapsto\:To \:  eliminate \: \theta }

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = a \: cos\theta

can be rewritten as

\rm :\longmapsto\:cos\theta  = \dfrac{x}{a} -  -  - (1)

Also given that,

\rm :\longmapsto\:y \:  =  \: b \: sin\theta

can be rewritten as

\rm :\longmapsto\:sin\theta  = \dfrac{y}{b} -  -  - (2)

We know, from Trigonometric Identities,

\red{\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2}\theta = 1 }

On substituting the values from equation (1) and equation (2), we get

\rm :\longmapsto\:  {\bigg(\dfrac{x}{a} \bigg) }^{2} + {\bigg(\dfrac{y}{b} \bigg) }^{2}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

Hence, is the required result

Additional Information :-

 \rm \: 1) \: x = acos\theta  \: and \: y = bsin\theta  \: are \: parametric \: coordinates \: of \\ \boxed{ \bf{ \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1}}

 \rm \: 2) \: x = asec\theta  \: and \: y = btan\theta  \: are \: parametric \: coordinates \: of \\ \boxed{ \bf{ \: \dfrac{ {x}^{2} }{ {a}^{2} } - \dfrac{ {y}^{2} }{ {b}^{2} }  = 1}}

 \rm \: 3) \: x = acos\theta  \: and \: y = asin\theta  \: are \: parametric \: coordinates \: of \\ \boxed{ \bf{ \: {x}^{2}  +  {y}^{2} =  {a}^{2} }}

Similar questions