Math, asked by Adityaadi9488, 1 year ago

If x = a (cos 2t + 2t sin 2t) and y = a (sin 2t – 2t cos 2t), then find 2 2 dx d y .

Answers

Answered by lublana
8

\frac{d^2y}{dx^2}=\frac{1}{2at}sec^32t

Step-by-step explanation:

x=a(cos2t+2tsin2t)

y=a(sin2t-2tcos2t)

Differentiate w.r.t t

\frac{dx}{dt}=a(-2sin2t+2sin2t+4tcos2t)

By using the formula

\frac{d(cosx)}{dx}=-sinx

\frac{d(sinx)}{dx}=cosx

\frac{d(u\cdot v)}{dx}=u'v+v'u

\frac{dx}{dt}=4atcos2t

\frac{dy}{dt}=a(2cos2t-2cos2t+4tsin2t)=4atsin2t

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

\frac{dy}{dx}=\frac{4atsin2t}{4atcos2t}=tan2t

By using \frac{sinx}{cosx}=tanx

\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{d(tan2t)}{dx}=sec^22t\times 2\times \frac{dt}{dx}=2sec^22t\times \frac{1}{4atcos2t}

By using the formula \frac{d(tanx)}{dx}=sec^2x

\frac{d^2y}{dx^2}=\frac{1}{2at}sec^22t\times sec2t=\frac{1}{2at}sec^32t

By using \frac{1}{cosx}=secx

#Learns more:

https://brainly.com/question/2254613

Answered by catherinecleetus
0

Answer:

Step-by-step explanation:

Similar questions