If x = a cos θ and y = b sin θ, then b²x²=a²y² =
(a)a² b²
(b)ab
(c)a⁴ b⁴
(d)a² + b²
Answers
Answered by
1
Answer:
The value of b²x² + a²y² is a²b².
Among the given options option (a) a²b² is correct.
Step-by-step explanation:
Given : x = a cos θ and y = b sin θ
On Substituting the values of x and y in the given expression b²x² + a²y², b²x² + a²y² = b²(a cos θ)² + a²(b sin θ)²
= b²a²cos²θ + a²b²sin²θ
= a²b²(cos²θ + sin²θ)
= a²b² × 1
[By using the identity , sin² θ + cos² θ = 1]
b²x² + a²y² = a²b²
Hence, the value of b²x² + a²y² is a²b².
HOPE THIS ANSWER WILL HELP YOU...
Answered by
1
if the question is b^2 x^2 + a^2y^2 the ans will be option a
Attachments:
Similar questions