Math, asked by bidishabanerjee1513, 9 months ago

if x=a cos theta and y=a sin theta, express x in terms of y ​

Answers

Answered by pulakmath007
12

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \longmapstoFORMULA TO BE IMPLEMENTED

 {sin}^{2}  \theta +    {cos}^{2}  \theta = 1

 \longmapstoCALCULATION

x=a cos  \theta \:  \:  and \:  \:  \:  \:  y=a sin  \theta

Therefore

 {x}^{2}  +  {y}^{2}

 =  {(a \ \cos \theta ) }^{2}  + {(a \ \sin  \theta ) }^{2}

 =  {a}^{2}  {sin}^{2}  \theta +  {a}^{2}  {cos}^{2}  \theta

 =  {a}^{2} ( {sin}^{2}  \theta +    {cos}^{2}  \theta)

 =  {a}^{2}  \times 1

 =  {a}^{2}

So

 {x}^{2}  +  {y}^{2}  =  {a}^{2}

 \implies \:  {x}^{2}  =  {a}^{2}  -  {y}^{2}

 \therefore \: x \:  =   \sqrt{ {a}^{2}  -  {y}^{2} }

Which is required relationship

Similar questions