Math, asked by bidishabanerjee1513, 8 months ago

if x=a cos theta and y=a sin theta, express x in terms of y ​

Answers

Answered by suryavenkat530
1

Answer:

y=a2sin2theeta

Step-by-step explanation:

x=acos theeta y=asin theeta

x2+y2=a2cos2 theeta +a2sin2 theeta

x2+y2=a2 (sin2 theeta+cos2 theeta)

x2+y2=a2

y2=a2-x2

y2=a2-a2cos2 theeta

y2=a2 (1-cos2 theeta)

y2=a2sin2 theeta

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \longmapstoFORMULA TO BE IMPLEMENTED

 {sin}^{2}  \theta +    {cos}^{2}  \theta = 1

 \longmapstoCALCULATION

x=a cos  \theta \:  \:  and \:  \:  \:  \:  y=a sin  \theta

Therefore

 {x}^{2}  +  {y}^{2}

 =  {(a \ \cos \theta ) }^{2}  + {(a \ \sin  \theta ) }^{2}

 =  {a}^{2}  {sin}^{2}  \theta +  {a}^{2}  {cos}^{2}  \theta

 =  {a}^{2} ( {sin}^{2}  \theta +    {cos}^{2}  \theta)

 =  {a}^{2}  \times 1

 =  {a}^{2}

So

 {x}^{2}  +  {y}^{2}  =  {a}^{2}

 \implies \:  {x}^{2}  =  {a}^{2}  -  {y}^{2}

 \therefore \: x \:  =   \sqrt{ {a}^{2}  -  {y}^{2} }

Which is required relationship

Similar questions