If x=a cos theta and y=b cot theta, show that (a²/x²)-(b²/y²)=1
Answers
Answered by
22
Given,
x = a cos∅
So x = a² cos²∅
y = b cot ∅
So y² = b² cot²∅
Now,
- ![\frac{\cancel{{b}^{2}}}{\cancel{{b}^{2}} {cot}^{2}\varnothing} \frac{\cancel{{b}^{2}}}{\cancel{{b}^{2}} {cot}^{2}\varnothing}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ccancel%7B%7Bb%7D%5E%7B2%7D%7D%7D%7B%5Ccancel%7B%7Bb%7D%5E%7B2%7D%7D+%7Bcot%7D%5E%7B2%7D%5Cvarnothing%7D)
We know,
1/cos² = sec²
1/cot² = tan²
sec²∅ - tan²∅ = 1
x = a cos∅
So x = a² cos²∅
y = b cot ∅
So y² = b² cot²∅
Now,
We know,
1/cos² = sec²
1/cot² = tan²
sec²∅ - tan²∅ = 1
Similar questions