Math, asked by roosh99, 1 year ago

if x= a cos theta +b sin theta , and y =a sin theta - b cos theta , prove that x^2 + y^2 = a^2 +b^2.​

Answers

Answered by Anonymous
15

Answer :-

Step-by-step explanation :-

We have,

x = acosθ + bsinθ.

y = asinθ - bcosθ.

Now,

Squaring both sides and adding the result, we get

x² + y² = (acosθ + bsinθ)² + (asinθ - bcosθ)².

       

= a²cos²θ + b²sin²θ + 2abcosθ sinθ + a²sin²θ + b²cos²θ - 2abcosθ sinθ.

= a²(cos²θ + sin²θ) + b²(sin²θ +cos²θ).

= a² + b². [  \because sin²θ +cos²θ = 1 . ]

RHS = LHS

Hence, it is proved.


roosh99: Thank a lot
roosh99: Excuse me,can't we solve the problem using the formula (a+b)^2+(a-b)^2=2(a^2+b^2)
Answered by ayankhan4616
5

Answer:

mera phone kharab ho gaya hai iss liye baat nai ho paa rahi hai roosh plzz bura mtt mano

Similar questions