if X =a cos theta + b sin theta and y =a sin theta-B cos theta prove that x^2+ y^2= a^2 + b^2
PLEASE GIVE ME ANSWER...
I WANT IT TOMORROW...
Answers
Answer:
Given that ;
- x = a cosθ + b sinθ
- y = a sinθ - b cosθ
At first, find the value of x².
⇒ x² = (a cosθ + b sinθ )²
⇒ x² = a² cos²θ + b² sin²θ + 2 * a cosθ * b sinθ .... (i)
Now, find the value of y².
⇒ y² = (a sinθ - b cosθ )²
⇒ y² = a² sin²θ + b² cos²θ - 2 * a sinθ * b cosθ .... (ii)
On adding equation (i) and (ii) -
⇒ x² + y² = a² cos²θ + b² sin²θ + 2 * a cosθ * b sinθ + a² sin²θ + b² cos²θ - 2 * a sinθ * b cosθ
⇒ x² + y² = a² ( cos²θ + sin²θ ) + b² ( sin²θ + cos²θ )
We know that -
- sin²θ + cos²θ = 1
⇒ x² + y² = a² + b²
Hence, it is proved.
Answer:
Step-by-step explanation:
Given :-
x = a cosθ + b sinθ
y = a sinθ - b cosθ
To Prove :-
x² + y² = a² + b²
Formula to be used :-
Some Identities :-
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b²-2ab
sin²θ + cos²θ = 1
Solution :-
L.H.S = x² + y²
x² + y²
= (a sinθ + b cosθ)² + (a cosθ + b sinθ)²
= (a²sin²θ + b²cos²θ a + ab sinθ cosθ ) + (a²cos²θ a + b²sin²θ - ab sinθ cosθ)
[Using (a + b)² = a² + b² + 2ab and (a - b)² = a² + b² - 2ab]
= a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)
= a²+b² [sin²θ + cos²θ = 1]
= x² + y² = a²+b²
= L.H.S = R.H.S
Hence, Proved.