Math, asked by pankaj9617, 10 months ago

IF X =a cos theta +b sin theta and y =a sin theta -b cos theta ,proves that X square+ yswuare =asquare+b square

Answers

Answered by Vamprixussa
12

Given

\sf x = \sf a cos\theta +bsin\theta

\sf y = asin\theta-bcos\theta

To Prove

\sf x^{2} + y^{2} = a^{2} +b^{2}

Solving the LHS side, we get,

\implies \sf x^{2} + y^{2}

\implies ( \sf a cos\theta +bsin\theta)^{2} + \sf (asin\theta-bcos\theta)^{2}  \\

\implies \sf a^{2}cos^{2}\theta + 2abcos\theta\sin\theta + b^{2}sin^{2}\theta + a^{2}sin^{2}\theta - 2abcos\theta\sin\theta + b^{2}cos^{2}\theta

\implies \sf a^{2}cos^{2}\theta + b^{2}sin^{2}\theta + a^{2}sin^{2}\theta + b^{2}cos^{2}\theta

\implies \sf a^{2}cos^{2}\theta + a^{2}sin^{2}\theta + b^{2}sin^{2}\theta + b^{2}cos^{2}\theta

\implies \sf a^{2}(sin^{2}\theta+  cos^{2}\theta) + b^{2} (sin^{2}\theta+  cos^{2}\theta)

\implies \sf a^{2} +b^{2} (Since, \ sin^{2}\theta + cos^{2}\theta = 1)

= RHS

                                                       

Answered by AdorableMe
12

GIVEN :-

X = a cosθ + b sinθ

Y = a sinθ - b cosθ

TO PROVE :-

X² + Y² = a² + b²

PROOF :-

LHS :-

X² + Y²

= (a cosθ + b sinθ)² + (a sinθ - b cosθ)²

= (a²cos²θ + b²sin²θ + 2ab sinθcosθ) + (a²sin²θ + b²cos²θ - 2ab sinθcosθ)

= a²cos²θ + a²sin²θ + b²sin²θ + b²cos²θ + 2ab sinθcosθ - 2ab sinθcosθ

= a²(cos²θ + sin²θ) + b²(sin²θ + cos²θ)

= a²(1) + b²(1)

= a² + b² = RHS

\rule{200}{2}

Identities used :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • sin²θ + cos²θ = 1
Similar questions