Math, asked by raunakkushwaha24, 9 months ago

If x= a cos theta - b sin theta and y=a sin theta +b cos theta prove that x^2+y^2=a^2+b^2​

Answers

Answered by shinchanisgreat
0

Answer:

x = a \cos( \alpha )  - b \sin( \alpha )  \\ y = a \sin( \alpha )  + b \cos( \alpha )

To prove:

 {x}^{2}  +  {y}^{2}  =  {a}^{2}  +  {b}^{2}

L.H.S.=>

 =   >  {x}^{2}  +  {y}^{2}  \\  =  >  {(a \cos( \alpha )   - b \sin( \alpha ) ) }^{2}  +  {(a \sin( \alpha )  + b \cos( \alpha ))  }^{2}   \\

 =  > ( {a}^{2}  { \cos}^{2}  \alpha  - 2ab \cos( \alpha )  \sin( \alpha )  +  {b}^{2}  {sin}^{2}  \alpha ) + ( {a}^{2}  {sin}^{2}  \alpha  + 2ab \sin( \alpha )  \cos( \alpha )  +  {b}^{2}  {cos}^{2}  \alpha )

Similar questions