Math, asked by inayatsharma07, 5 months ago

if x=a cos theta ,y=a sin theta then find dy/dx​

Answers

Answered by Anonymous
5

Solution

Given:-

 \implies\sf\: x = acos \theta

 \sf \implies \: y = asin \theta

To find

 \sf \implies \:  \dfrac{dy}{dx}

Now Take x Differentiate W.R.T Θ

 \sf \implies \dfrac{dx}{d \theta}  =  acos \theta

 \sf \implies \:  \dfrac{dacos \theta}{d \theta}  \:  \:  \:  \:  \: where \:  \: a \: is \: constant

We can write as

 \sf \implies \:  \dfrac{a \: dcos \theta}{d \theta}

We get

 \sf \implies \dfrac{dx}{d \theta}  =  - a \: sin \theta

Now Take y Differentiate W.R.T Θ

 \sf \implies \dfrac{dy}{d \theta}  =  a \: sin \theta

\sf \implies \:  \dfrac{a \: d \: sin \theta}{d \theta}

 \sf \implies \:  \dfrac{dy}{ d\theta}  = a \: cos \theta

Now we have to find dy/dx , so we can write as

 \sf \implies \:  \dfrac{ \dfrac{dy}{d \theta} }{ \dfrac{dx}{d \theta} }  \implies \dfrac{dy}{d \theta}  \times  \dfrac{d \theta}{dx}   \implies \:  \dfrac{dy}{dx}

We get

 \sf \implies \:  \dfrac{dy}{dx}  =  \dfrac{ \dfrac{dy}{d \theta} }{ \dfrac{dx}{d \theta} }  =  \dfrac{acos \theta}{ - a \sin \theta}  =  - cot \theta

Answer is

 \sf \implies \:   - cot \theta

Similar questions
Math, 2 months ago