If x=a cos theta, y=b sin theta , then d³y/dx³ is :-
Answers
Answer:
differentiate y/x one by three times
and u will got the answer
x = x=a cos θ,
y=b sin θ
x = a cos θ, y = b sinθ
◾first differentiate x = a cos θ
wrt to parameter θ
dx / d θ
= d / d theta ( a cos θ)
= a ( -sin θ)
= - a sin θ
◾Now, differentiate y = b sin θ
wrt θ
dy / d θ
= d / d θ ( b sin θ)
= b ( cos θ)
= b cos θ
__________________________________
★ we know ,
(dy / d x )
=( dy / dθ ) / (dx / dθ)
therefor ,
( dy / dx )
= ( b cos θ ) / (- a sin θ)
=- ( (b / a ) x ( cot θ))
( dy /dx ) = - ( (b / a ) x ( cot θ))
__________________________________
◾Now, again differentiate wrt x
(d^2 y / d x^2 )
= -( ( b / a ) (d / dx ( cot θ)))
= - (( b / a) ( - cosec^2 θ)
x ( d θ / dx)
= ( b / a) ( cosec ^2 θ)
x ( d θ / dx)
= ( b / a) ( cosec ^2 θ)
x ( 1 / ( dx / dθ) )
we have, ( dx / dθ) = - a sinθ
= ( b / a) ( cosec ^2 θ )
x( 1 / ( - a sin θ)
= -( b / a^2 ) x ( cosec^2 θ x cosec θ)
= ( - b / a^2 ) x ( cosec^3 θ)
__________________________________
◾Again differentiate wrt x
( d^3 y / d x^3 )
= d / dx ( ( - b / a^2 ) x ( cosec^3 θ) )
=( -b / a^2 ) x ( 3 cosec^2 θ x ( - cosec θ x cot θ) x ( d θ / d x)
= ( -b / a^2 ) x ( 3 cosec^2 θ x ( - cosec θ x cot θ) x( 1 / (dx / d θ) )
put the value of ( dx / d θ ) = - a sin θ
= ( -b / a^2 ) x ( 3 cosec^2 θ x ( - cosec θ x cot θ) x( 1 / (- a sin θ ) )
= ( b / a^3 ) ( 3 cosec^2 θ x ( - cosec θ x cot θ) x ( cosec θ)
( d^3 y / d x^3 )
= ( b / a^3 ) ( 3 cosec^3 θ x ( - cosec θ x cot θ)
__________________________________