if x=a cos theta , y=b sin theta then find value of b^2x^2+a^2y^2-a^2b^2
Answers
Answered by
24
Answer:
Given
x = acosA , y = bsinA
We have
b^2 * x^2 + a^2 * y^2 - a^2 * b^2 ......................(i)
put x & y values in equation (i)
b^2 a^2 cos^2 A + a^2 b^2 sin^2 A - a^2 * b^2
a^2 b^2 (cos^2 A +sin^2 A -1)
a^2 b^2 (1-1) [sin^2 A + cos^2 A = 1]
a^2 b^2 * 0
= 0
thank you.................
Answered by
0
Step-by-step explanation:
x=acosθ;y=bsinθ
cosθ= ax ;sinθ= y
cos 2 θ+sin 2 θ=1= a 2x 2 + b 2y 2
x 2 b 2 +a 2 y 2 =a 2 b 2 .
Similar questions