If x= a cos theta, y = b sin theta, then show that x^2/a^2 + y^2/b^2 =1
Answers
Answered by
1
Given---> x = a Cosθ , y = b Sinθ
To show----> x² / a² + y² / b² = 1
Solution----> ATQ,
x = a Cosθ
=> x / a = Cosθ -------------------( 1 )
y = b Sinθ
=> y / b = Sinθ ........................ ( 2 )
We know that,
Cos²θ + Sin²θ = 1
=> ( x / a )² + ( y / b )² = 1
=> x² / a² + y² / b² = 1
=> x² / a² + y² / b² = 1
Additional information---->
1) 1 + tan²θ = Sec²θ
2) 1 + Cot²θ = Cosec²θ
3) Sin ( 90° - θ ) = Cosθ
4) Cos ( 90° - θ ) = Sinθ
5) tan ( 90° - θ ) = Cotθ
6) Cot( 90° - θ ) = tanθ
7) Sec ( 90° - θ ) = Cosecθ
8) Cosec ( 90° - θ ) = Secθ
Similar questions