Math, asked by tyaginishkarsh2004, 7 months ago

If x/a cos θ+ y/ b sin θ =1 and x/a cos θ-y/b sin θ= -1 prove that x²/a² + y²/b² = 2..​

Answers

Answered by MissSolitary
2

Given :-

 \tt  \: \frac{x}{a}  \: sin \theta \:  -  \:  \frac{y}{b}  \: cos \theta \:  = 1  \:  \: \\

\tt  \frac{x}{a}  \: sin \theta \:   +   \:  \frac{y}{b}  \: cos \theta \:  = -1 \\  \\

To prove :-

  : :  \longrightarrow \tt \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 2 \\

Proof :-

 \implies \tt  \: \frac{x}{a}  \: sin \theta \:  -  \:  \frac{y}{b}  \: cos \theta \:  = 1  \:  \: \\

On squaring both the sides,

 \implies \tt  \:  {\huge{(}}{\frac{x}{a}  \: sin \theta \:  -  \:  \frac{y}{b}  \: cos \theta{ \huge{) {}^{2} }}  \:  = (1 ) {}^{2} } \:  \: \\

We know that,

(a-b)² = a² + b² - 2ab

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:  -  \: 2. \frac{x}{a}  \: sin \theta. \frac{y}{b}  \: cos \theta \:  = 1  \:  \: \\  \\

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:  -  \:  \frac{2xy}{ab}  \: sin \theta.   \: cos \theta \:  = 1  \:  \: \\  \\

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:   = 1   + \frac{2xy}{ab}  \: sin \theta.   \: cos \theta \:  \: \\

Taking x²/a² + y²/b² common on L.H.S and taking L.C.M on R.H.S,

 \implies \tt  \: { \huge{(}}\frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }{ \huge{)}} ( \: sin {}^{2}  \theta \:  +  \:   {cos}^{ 2}   \theta)\:   = \frac{ab + 2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: \\  \\

We know that,

(sin²θ + cos²θ) = 1

 \implies \tt  \: { \huge{(}}\frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }{ \huge{)}} ( 1)\:   = \frac{ab + 2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: \\  \\

  :  \implies   { \green{\tt\: \frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }\:   = \frac{ab + 2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: }}\\

Now,

It was also given that,

 : \implies\tt  \frac{x}{a}  \: sin \theta \:   +   \:  \frac{y}{b}  \: cos \theta \:  = -1 \\  \\

On squaring both the sides,

 \implies \tt  \:  {\huge{(}}{\frac{x}{a}  \: sin \theta \:   +  \:  \frac{y}{b}  \: cos \theta{ \huge{) {}^{2} }}  \:  = (-1 ) {}^{2} } \:  \: \\

We know that,

(a+b)² = a² + b² + 2ab

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:   +   \: 2. \frac{x}{a}  \: sin \theta. \frac{y}{b}  \: cos \theta \:  = 1  \:  \: \\  \\

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:   +  \:  \frac{2xy}{ab}  \: sin \theta.   \: cos \theta \:  = 1  \:  \: \\  \\

 \implies \tt  \: \frac{x {}^{2} }{a {}^{2} }  \: sin {}^{2}  \theta \:  +  \:  \frac{ {y}^{2} }{ {b}^{2}  }  {cos}^{2}   \theta\:   = 1    -  \frac{2xy}{ab}  \: sin \theta.   \: cos \theta \:  \: \\

Again, taking x²/a² + y²/b² common on L.H.S and taking L.C.M on R.H.S,

 \implies \tt  \: { \huge{(}}\frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }{ \huge{)}} ( \: sin {}^{2}  \theta \:  +  \:   {cos}^{ 2}   \theta)\:   = \frac{ab  -  2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: \\  \\

We know that,

(sin²θ + cos²θ) = 1

 \implies \tt  \: { \huge{(}}\frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }{ \huge{)}} ( 1)\:   = \frac{ab  -  2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: \\  \\

:  \implies   { \green{\tt\: \frac{x {}^{2} }{a {}^{2} }  + \frac{ {y}^{2} }{ {b}^{2}  }\:   = \frac{ab  -  2xy \: sin \theta.   \: cos \theta }{ab}  \:  \: }}\\

So,

We got the values for both given eq.

Now,

We need to prove,

 \implies \: \tt \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 2 \\  \\

Put the values of x²/a² + y²/b² that we got above,

L.H.S =>

 \implies \tt \:  \frac{ab + 2xy \: sin \theta.cos \theta}{ab }  + \frac{ab  -  2xy \: sin \theta.cos \theta}{ab } \\

 \implies \tt \: \frac{ab + 2xy \: sin \theta.cos \theta +ab  -  2xy \: sin \theta.cos \theta }{ab } \\

 \implies \tt \: \frac{ab +  \cancel{2xy \: sin \theta.cos \theta }+ab  -   \cancel{2xy \: sin \theta.cos \theta }}{ab } \\

  \implies \tt \:  \frac{2 \:  \cancel{ab}}{ \cancel{ab}} \:   = 2{ \red{ \: = R.H.S }} \:  \: (proved)

Similar questions