If x/a cos θ + y/b sin θ = 1 and x/a sin θ – y/b cos θ = 1, prove that (x2/ a2 + y2/b2) = 2.
Answers
Answered by
4
Answer:
x
cosθ+
b
y
sinθ=1−−−−−(1)
a
x
sinθ−
b
y
cosθ=1−−−−−(2)
Squaring both the equations and then adding ,
\bold{[\frac{x}{a}cos\theta+\frac{y}{b}sin\theta]^2+[\frac{x}{a}sin\theta-\frac{y}{b}cos\theta]^2=1^2+1^2}[
a
x
cosθ+
b
y
sinθ]
2
+[
a
x
sinθ−
b
y
cosθ]
2
=1
2
+1
2
x²/a² cos²θ + y²/b² sin²θ + 2xy/ab sinθ.cosθ + x²/a² sin²θ + y²/b² cos²θ - 2xy/ab sinθ.cosθ = 2
⇒x²/a² (cos²θ + sin²θ) + y²/b² (sin²θ + cos²θ ) = 2
⇒x²/a² × 1 + y²/b² × 1 = 2 [ ∵ sin²x + cos²x = 1 from trigonometric identities ]
∴ x²/a² + y²/b² = 2 , hence proved
Derickdj8055:
thanks
Similar questions