If x = a cos , y = b sin , then b2 x 2 + a2 y 2 – a 2b 2 is equal to
Answers
Answered by
1
x = acos∅
y = bsin∅
→ b²x² + a²y² - a²b²
= b²a²cos²∅ + a²b²sin²∅ - a²b²
= a²b²(cos²∅ + sin²∅) - a²b²
= a²b² - a²b²
= 0
Identity used :
cos²∅ + sin²∅ = 1
Answered by
26
Question :
If x = a cos θ, y = b sin θ, then b² x² + a² y² – a²b²
How to do :
First according to the given condition we need to put the values and then we will take
Solution :
- b² x² + a² y² – a²b²
Putting the values we get :
- b² (a cos θ)² + a² (b sin θ)² - a²b²
- b² a² cos² θ + a² b² sin² θ - a²b²
By taking a²b² as common we get
- a²b²(cos² θ + sin² θ) - a²b²
Now according to the square relations we know that sin² θ + cos² θ = 1
- a²b²(1) - a²b²
- a²b² - a²b²
- 0
Hence, the answer is 0
Know More :
Square Relations :
- sin² θ + cos² θ = 1
- sec² θ – tan² θ = 1
- cosec² θ – cot² θ= 1
Quotient Relations :
- sin θ× cosec θ = 1
- cos θ × sec θ = 1
- tan θ × cot θ = 1
Basic :
- sin ∅ = P/H
- cos ∅ = B/H
- tan ∅ = P/B
- cot = B/P
- sec = H/B
- cosec = H/P
Here,
P refers Perpendicular or Height
B refers Base
H refers Hypotentuse
Trigonometric value of standard angles :
Trigonometrical ratios of complementary angles :
- sin (90° - θ) = cosec θ
- cos (90° - θ) = sec θ
- tan (90° - θ) = cot θ
- cot (90° - θ) = tan θ
- sec (90° - θ) = cos θ
- cosec (90° - θ) = sin θ
Regards
# BeBrainly
Similar questions