If x = a(Cosec A + Cot A) and y = b(1 - Cos A/Sin A) then find the value of xy.
Answers
Answered by
66
Please check the attachment
Please Mark it Brainlist
FOLLOW ME
THANK YOU
Attachments:
Answered by
29
ANSWER:
The value of xy = ab.
GIVEN:
x = a(Cosec A + Cot A)
y = b(1 - Cos A)/Sin A
TO FIND:
The value of xy.
FORMUALE:
★ 1 / Sin A = Cosec A
★ Cos A / Sin A = Cot A
★ Cosec² A - Cot² A = 1
★ (A + B)(A - B) = A² - B²
EXPLANATION:
xy = a(Cosec A + Cot A) × b(1 - Cos A)/SinA
(1 - Cos A)/SinA = 1/Sin A - Cos A/Sin A
(1 - Cos A)/SinA = Cosec A - Cot A
Substitute (1 - Cos A)/SinA = Cosec A - Cot A in xy = a(Cosec A + Cot A) × b(1 - Cos A)/SinA
xy = a(Cosec A + Cot A) × b(Cosec A - Cot A)
xy = ab(Cosec² A - Cot² A)
xy = ab(1)
xy = ab
The value of xy = ab.
Similar questions