Math, asked by pawaryogesh2005, 3 months ago

if x = a coseco + b coto and
y= a coseco - b coto then eliminate theta​

Answers

Answered by mathdude500
7

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{x = acosec\theta + bcot\theta} \\ &\sf{y = acosec\theta - bcot\theta} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: eliminate - \begin{cases} &\sf{\theta}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \:  {cosec}^{2}x -  {cot}^{2}x = 1}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = acosec\theta + bcot\theta -  - (1)

\rm :\longmapsto\:y = acosec\theta - bcot\theta -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:x + y = 2acosec\theta

\bf\implies \:cosec\theta = \dfrac{x + y}{2a}  -  -  - (3)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:x - y = 2bcot\theta

\bf\implies \:cot\theta = \dfrac{x - y}{2b}  -  -  - (4)

Now,

We know,

\rm :\longmapsto\: {cosec}^{2}\theta -  {cot}^{2}\theta = 1

On substituting the values from equation(3) and (4), we get

\rm :\longmapsto\: {\bigg(\dfrac{x + y}{2a}  \bigg) }^{2}  -  {\bigg(\dfrac{x - y}{2b}  \bigg) }^{2} = 1

\rm :\longmapsto\: {\bigg(\dfrac{x + y}{a}  \bigg) }^{2}  -  {\bigg(\dfrac{x - y}{b}  \bigg) }^{2} = 4

Additional Information :-

 \boxed{ \sf \:  {sin}^{2} +  {cos}^{2}x = 1}

 \boxed{ \sf \:  {sec}^{2}x -  {tan}^{2}x = 1}

 \boxed{ \sf \: cosecx = \dfrac{1}{sinx}}

 \boxed{ \sf \: secx = \dfrac{1}{cosx}}

 \boxed{ \sf \: cotx = \dfrac{1}{tanx}}

Similar questions