Math, asked by tomba3722, 1 year ago

If x= a (cost + tsint) y = a(sint-tcost) find d2y/dx2

Answers

Answered by boffeemadrid
1

Answer:

\frac{d^{2}y }{dx^{2}}=\frac{sec^{3}t}{at}

Step-by-step explanation:

x=a(cost+tsint)

Differentiating this equation with respect to t, we have

\frac{dx}{dt}=a(-sint)+a(tcost+sint)

\frac{dx}{dt}=atcost                                                                

Now, y=a(sint-tcost)

Differentiating with respect to t, we have

\frac{dy}{dt}=acost-a(-tsint+cost)

\frac{dy}{dt}=atsint

Now, \frac{dy}{dx}=\frac{dy}{dt}{\times}\frac{dt}{dx}

\frac{dy}{dx}=(atsint){\times}\frac{1}{(atcost)}

\frac{dy}{dx}=tant

Again differentiating this equation with respect to x, we have

\frac{d}{dx}(\frac{dy}{dx})=\frac{d}{dx}(tant)

\frac{d^{2}y }{dx^{2}}=\frac{d}{dx}(tant)\frac{dt}{dx}

Now, substituting the value of \frac{dt}{dx}  in above equation, we have

\frac{d^{2}y }{dx^{2}}=sec^{2}t{\times}\frac{1}{atcost}

\frac{d^{2}y }{dx^{2}}=\frac{sec^{2}t}{at{\times}\frac{1}{sect}}

\frac{d^{2}y }{dx^{2}}=\frac{sec^{3}t}{at}


Similar questions