Math, asked by umarbojhgar, 9 months ago

if x=a (cost+tsint), y=a (sint-tcost) then find dy/dx​

Answers

Answered by ashishks1912
6

GIVEN :

If x=a (cost+tsint), y=a (sint-tcost) then find \frac{dy}{dx}

TO FIND :

The value of  \frac{dy}{dx}

SOLUTION :

Given that the values are  x=a (cost+tsint), y=a (sint-tcost)

Since the given values of x and y are in terms of t we have that

\frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx}

\frac{dy}{dx}=\frac{dy}{dt}.\frac{1}{\frac{dx}{dt}}

y=a (sint-tcost)

Differentiating y with respect to t we get

\frac{dy}{dt}=a[cost-d(tcost)]

By using the differentiation formulae  :

i) d(cost)=-sint

ii) d(sint)=cost

iii) d(uv)=uv^{\prime}+u^{\prime}v

 

=a[cost-(t(-sint)+cost(1))]

=a[cost+tsint-cost]

=atsint

\frac{dy}{dt}=atsint

x=a (cost+tsint)

Differentiating x with respect to t we get

\frac{dx}{dt}=a[sint+d(tsint)]

By using the differentiation formulae  :

i) d(cost)=-sint

ii) d(sint)=cost

iii) d(uv)=uv^{\prime}+u^{\prime}v

 

=a[sint+(t(cost)+sint(1))]

=a[sint+tcost-sint]

=atcost

\frac{dx}{dt}=atcost

Now \frac{dy}{dx}=atsint(\frac{1}{\atcost})

=\frac{sint}{cost}

By using the trignometric formula :

\frac{sinx}{cosx}=tanx

=tant

\frac{dy}{dx}=tant

∴ the value is \frac{dy}{dx}=tant

Similar questions