Math, asked by yash5893, 1 year ago

if x+a is a factor of polynomial x^2 + lx+ m and x^2 +nx +k then prove that a=m-k / l-k

Attachments:

Answers

Answered by ram071987
7

x + a = 0 \\ x =  - a \\ p(x) =  {x}^{2}  + lx + m \\ p( - a) = (  { - a}^{2} )  + l( - a) + m \\  {a}^{2}  - la + m = 0.....1 \\ and \\  p(x) =  {x}^{2}  + nx + k \\ p( - a) =  { - a}^{2}  + n( - a) + k \\  {a}^{2}  - na + k = 0.....2 \\ from \: 1 \: and \: 2 \\  {a}^{2}  - la + m =  {a}^{2}  - na + k \\  - la + na =  - m + k \\  - a(l  -  n) =  - (m - k) \\ a =  \frac{m - k}{l - n}
Similar questions