Math, asked by vijaykumar12001318, 1 month ago

if (x+a) is a factor of the polynomial
x {}^{2}  + px + q \: and \: x {}^{2}  + mx + n
prove that
a =  \frac{n - q}{m - p}

please give full answer​

Answers

Answered by kamalhajare543
10

Answer:

 \sf \red{Given :-}

(x+a) is a factor of x^2 +px+q and x^2+mx+n

then using the factor theorem which says that the polynomial f(x0 has a factor (x−k) if and only if f(k)=0

We have

 \sf \red{(−a)^2 +p(−a)+q=0 \:  \:  \:  \:  \:  \:  \:  \:  \: ⟶(1)}

  \sf \pink{⇒a^2 −ap+q=0} \:  \:  \:  \:  \:  \:  \:  \:  \: ⟶(2)

and

  \sf(−a)^2 +m(−a)+n=0 \:  \:  \:  \:  \:  \: ⟶(3)

 \sf \: ⇒a^2 −ma+n=0 \:  \:  \:  \:  \:  \:  \: ⟶(4)

Subtracting (2) & (4) we get

 \sf \: −ap+am+q−n=0

 \sf \: ⇒+a(m−p)=n−q

 \pink{ \sf \: a = \frac{n - q}{m - p}}

Hence, Proved.

Similar questions